Attenuation of proteolysis and muscle wasting by curcumin c3 complex in MAC16 colon tumour-bearing mice.

نویسندگان

  • Rafat A Siddiqui
  • Samira Hassan
  • Kevin A Harvey
  • Tamkeen Rasool
  • Tapas Das
  • Pradip Mukerji
  • Stephen DeMichele
چکیده

Muscle wasting or cachexia is caused by accelerated muscle protein breakdown via the ubiquitin-proteasome complex. We investigated the effect of curcumin c3 complex (curcumin c3) on attenuation of muscle proteolysis using in vitro and in vivo models. Our in vitro data indicate that curcumin c3 as low as 0.50 microg/ml was very effective in significantly inhibiting (30 %; P < 0.05) tyrosine release from human skeletal muscle cells, which reached a maximum level of inhibition of 60 % (P < 0.05) at 2.5 microg/ml. Curcumin c3 at 2.5 microg/ml also inhibited chymotrypsin-like 20S proteasome activity in these cells by 25 % (P < 0.05). For in vivo studies, we induced progressive muscle wasting in mice by implanting the MAC16 colon tumour. The in vivo data indicate that low doses of curcumin c3 (100 mg/kg body weight) was able to prevent weight loss in mice bearing MAC16 tumours whereas higher doses of curcumin c3 (250 mg/kg body weight) resulted in approximately 25 % (P < 0.05) weight gain as compared with the placebo-treated animals. Additionally, the effect of curcumin c3 on preventing and/or reversing cachexia was also evident by gains in the weight of the gastrocnemius muscle (30-58 %; P < 0.05) and with the increased size of the muscle fibres (30-65 %; P < 0.05). Furthermore, curcumin inhibited proteasome complex activity and variably reduced expression of muscle-specific ubiquitin ligases: atrogin-1/muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MURF-1). In conclusion, oral curcumin c3 results in the prevention and reversal of weight loss. The data imply that curcumin c3 may be an effective adjuvant therapy against cachexia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid.

Cancer cachexia is characterized by selective depletion of skeletal muscle protein reserves. Soleus muscles from mice bearing a cachexia-inducing tumor (MAC16) showed an increased protein degradation in vitro, as measured by tyrosine release, when compared with muscles from nontumor-bearing animals. After incubation under conditions that modify different proteolytic systems, lysosomal, calcium-...

متن کامل

Commentary: microparticles in biological tissues*

Depletion of skeletal muscle mass in animals bearing an experimental model of cachexia, the MAC16 adenocarcinoma, occurs by a reduction in protein synthesis accompanied by a large increase in protein degradation. Serum from mice bearing the MAC16 tumour produced an increased protein degradation in isolated gastrocnemius muscle, as measured by tyrosine release, with a maximal effect occurring wi...

متن کامل

Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skel...

متن کامل

Effect of branched-chain amino acids on muscle atrophy in cancer cachexia.

In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stran...

متن کامل

Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia.

Weight loss in cancer cachexia is attributable to decreased food intake and/or enhanced energy expenditure. We investigated the roles of the uncoupling proteins (UCPs) UCPI, -2, and -3 in a murine model of cachexia, the MAC16 adenocarcinoma. Weight fell to 24% below that of non-tumor-bearing controls (P < 0.01) 18 days after MAC16 inoculation, with significant reductions in fat-pad mass (-67%; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The British journal of nutrition

دوره 102 7  شماره 

صفحات  -

تاریخ انتشار 2009